Differentially Private Distributed Online Learning
نویسندگان
چکیده
Online learning has been in the spotlight from the machine learning society for a long time. To handle massive data in Big Data era, one single learner could never efficiently finish this heavy task. Hence, in this paper, we propose a novel distributed online learning algorithm to solve the problem. Comparing to typical centralized online learner, the distributed learners optimize their own learning parameters based on local data sources and timely communicate with neighbors. However, communication may lead to a privacy breach. Thus, we use differential privacy to preserve the privacy of learners, and study the influence of guaranteeing differential privacy on the utility of the distributed online learning algorithm. Furthermore, by using the results from Kakade and Tewari (2009), we use the regret bounds of online learning to achieve fast convergence rates for offline learning algorithms in distributed scenarios, which provides tighter utility performance than the existing state-of-the-art results. In simulation, we demonstrate that the differentially private offline learning algorithm has high variance, but we can use mini-batch to improve the performance. Finally, the simulations show that the analytical results of our proposed theorems are right and our private distributed online learning algorithm is a general framework.
منابع مشابه
Differentially Private Online Learning
In this paper, we consider the problem of preserving privacy in the online learning setting. Online learning involves learning from the data in real-time, so that the learned model as well as its outputs are also continuously changing. This makes preserving privacy of each data point significantly more challenging as its effect on the learned model can be easily tracked by changes in the subseq...
متن کامل(Near) Dimension Independent Risk Bounds for Differentially Private Learning
In this paper, we study the problem of differentially private risk minimization where the goal is to provide differentially private algorithms that have small excess risk. In particular we address the following open problem: Is it possible to design computationally efficient differentially private risk minimizers with excess risk bounds that do not explicitly depend on dimensionality (p) and do...
متن کامل(Nearly) Optimal Differentially Private Stochastic Multi-Arm Bandits
We study the problem of private stochastic multiarm bandits. Our notion of privacy is the same as some of the earlier works in the general area of private online learning [13, 17, 24]. We design algorithms that are i) differentially private, and ii) have regret guarantees that (almost) match the regret guarantees for the best non-private algorithms (e.g., upper confidence bound sampling and Tho...
متن کاملRobust Decentralized Differentially Private Stochastic Gradient Descent
Stochastic gradient descent (SGD) is one of the most applied machine learning algorithms in unreliable large-scale decentralized environments. In this type of environment data privacy is a fundamental concern. The most popular way to investigate this topic is based on the framework of differential privacy. However, many important implementation details and the performance of differentially priv...
متن کاملDifferentially Private Linear Models for Gossip Learning through Data Perturbation
Privacy is a key concern in many distributed systems that are rich in personal data such as networks of smart meters or smartphones. Decentralizing the processing of personal data in such systems is a promising first step towards achieving privacy through avoiding the collection of data altogether. However, decentralization in itself is not enough: Additional guarantees such as differential pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.06556 شماره
صفحات -
تاریخ انتشار 2015